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How do animals grow and  iiug /7
develop from a single cell? 'r.:::'t""f__

Developmental Biology.
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Developmental Biology.
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Developmental Biology,

We need single-cell resolution to:

e Discover more complicated mechanisms in
cellular development

» Confirm the distinct gene expression
signatures across different cell types

e |dentify functional differences among the
same cell cell type
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Cancer Biology
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Sperm Sperm
' @ Fertilized egg has 50% chance

. : @ Fertilized egg inherits
 of inheriting RB mutation. no RB mutation.
@ Mutation in one copy of RB gene @ Mutation in one copy of RB gene

/ is inherited in all body cells. occasionally occurs as cells divide.

V ' v

CIOIOID ®®®.

€ Mutation in second copy of RB
gene occurs in one or more retina cells.

|
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€ Mutation in second copy of RB
gene occurs in one or more retina cells.

=
Nonhereditary
retinoblastoma

http://www.mun.ca/biology/desmid/brian %
BIOL2060/BIOL2060-24/CB24 .htm|

® 2012 Pearson Educaton, Inc



http://www.mun.ca/biology/desmid/brian/BIOL2060/BIOL2060-24/CB24.html

Cancer Biology

A  Stochastic model

Tumors are composed of
genetically and phenotypically
heterogeneous clones Q

B Cancer stem cell model

Genetic A
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\ Major genetic/epigenetic events

http://www.thetcr.org/article/viewFile/1415/html/10439



http://www.thetcr.org/article/viewFile/1415/html/10439

Cancer Biology

Cancer stem cell A  Stochastic model

specific therapy

8- &

Conventional Tumor relapse B  Cancer stem cell model
cancer therapy

\@’

Tumor regression

C Combination model

Deep (bulk) sequencing can onl
o (bulk) seq g y O O

capture 1% of the cell population 00 AN 2 O
(excluding some types such as N\ N \40

circulating tumor cells).

\ Major genetic/epigenetic events

http://www.thetcr.org/article/viewFile/1415/html/10439
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Cancer Biology

We need single-cell resolution to:

e Find evidence for models of cancer

 Infer timing of mutations and the drivers

* Evaluate effectiveness of targeted therapy
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THE HUMAN MICROBIOME PROJECT SAYS THE HUMAN BODY

10,

@

ICIO

V]

HAS 100 TRILLION MICROSCOPIC L1FE FORMS LIVING IN IT.




Microbiology
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Micropiology

We need single-cell resolution to:

e Discover low-abundance species that are are
difficult to culture in vitro

* Monitor transcriptional gene activation
mechanisms for functional annotation
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Neurology

ey

Neuro- Radial oRG Migrating Immature Mature Intermediate Mature Interneuron
epithelial glial (RG) neuron  astrocyte astrocyte progenitor neuron

https://www.sciencemag.org/content/341/6141/1237758/embed/inline-graphic-1.qif
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Neurology




Neurology

We need single-cell resolution to:

e Study the mosaic genomes of individual
neurons and compositions in the brain

* Follow genetic variations during fetal
development

* Develop targeted therapy tor neurological
diseases for specific cell types
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Traditional v.s. Single-cell

ONE GENOME FROM MANY

Sequencing the genomes of single cells is similar to sequencing
those from multiple cells — but errors are more likely.

p Standard genome sequencing

..
-----

..........
.......................
..............

A sample containing thousands to DNA is extracted from all the nuclei. DNA is broken into fragments The sequences are assembled to give a
millions of cells is isolated. and then sequenced. common, ‘consensus’ sequence.

» Single-cell sequencing

A g
DNA amplification % i/

A single cell is difficult to isolate, but The DNA is extracted and amplified, Amplified DNA is sequenced. Errors introduced in earlier steps make
it can be done mechanically or with during which errors can creep in. sequence assembly difficult; the final
an automated cell sorter. sequence can have gaps.




Cell Technologi
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Single-Cell Technologies

Flow cytometry Microdissection Micromanipulation Microfluidics
e.g. FACS e.g. laser capture e.g. mechanical e.g. chamber or droplet
aspirator o
00060) &
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ChiP-gPCR/seq:
histone modifications
pooled
¢ g cells DamlD:
Single-cell separa LI ) chromatin-associated
. Subpopulation factors
analysis
Genome-wide
Cell-lysate Live-cell nucleosome mapping
analysis analysis
gRT-PCR/RNA-seq: transcriptomics Fluorescent reporter for gene expression
Hi-C: 3D chromosome conformation CiA: induction of chromatin modifications
RSMA/bisulfite seq: DNA methylation Fabs/Histac: global distribution of chromatin modifications
locus-specific nucleosome mapping "A-Tracer: tracking of protein-DNA interactions

FLIM-FRET: chromatin compaction

TRENDS in Cell Biology



Cell Sorting

Manual /
. . \
dissociated cells CCD Mo
camera - .
@ - Condenser
--®
- | Mi
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25x
\ Objective
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http://www.nature.com/nprot/journal/v6/n5/images_article/nprot.2011.322-F2.jpg
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Cell Sorting

FACS

dissociated cells

S O
OO D

Laser

4 FACS
machine

>10 000
cells

FACS: fluorescence activated cell sorting
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http://www.flowlab-childrens-harvard.com/yahoo_site_admin/assets/images/principle123.285181420_std.gif

Cell Sorting

LCM

cryosectioned
tissue

>1000
cells



http://www.genomemedicine.com/content/figures/gm247-2-l.jpg

Cell Sorting

Microfluidics: can isolate rare circulating cells

Before Ab secretion After Ab secretion
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Cell Sorting

High-throughput (~100,000 cells)

Drop-seq single cell analysis
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1000s of DNA-barcoded single-cell transcriptomes
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Amplification and Sequencing

Review: Next Generation Sequencing (NGS)

illumina’

~~ BIOSCIENCES

ion torrent |
b%AOXD+ QNANOPORE

HiSeq2000 / 2500
GS-FLX

MiSeq lon torrent

lon Pronton



Amplification and Sequencing

Review: Next Generation Sequencing (NGS)

library preparation

Bisulfite LUl

DNA bbbl el

dsDNA
Conversion

End Repair

dA Tailing

Adaptor — -
Ligation —C O

Size -— -—
- _—

Selection

Amplification/ —= == === ====-
Purffication o= ==77777"7

CACATGOGTGARALTTCA
ACATGGTGAAACCCCA
. ALCY

NGS (lllumina) ACATGGTGAANCCCCA

©2011, lllumina Inc. All rights reserved.
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Amplification and Sequencing

Review: Next Generation Sequencing (NGS)
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Amplification and Sequencing

Review: Next Generation Sequencing (NGS)
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Single-cell Amplification

Review: RNA-Sequencing
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Single-cell Amplification

library preparation

Review: RNA-Sequencing

DNA replication
DNA — DNA

Transcription
DNA —=RNA

w UL L LLLL

Translation
RNA «Protein

- @ @ @O @
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EE Thymine (T)

. s Cytosine (€)
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Amplification and Sequencing

Review: RNA-Sequencing

Isolate RNAs Generate cDNA, fragment,
Samples of interest 1 s e O size select, add linkers
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Condition 1 Condltlon 2
(normal colon) (colon tumor)

Map to genome,
transcriptome, and

predicted exon \

junctions

1 100s of millions of paired reads
) 10s of billions bases of sequence
Downstream analysis
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Amplification and Sequencing

Review: RNA-Sequencing

Total RNA
Oligo dT enrichment
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Gene function analysis



Amplification and Sequencing

Review: RNA-Sequencing
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Single-cell Amplification

ONE GENOME FROM MANY

Sequencing the genomes of single cells is similar to sequencing
those from multiple cells — but errors are more likely.

» Standard genome sequencing

s

'~ k
.........................

DNA is extracted from all the nuclei. DNA is broken into fragments The sequences are assembled to give a

A sample containing thousands to
and then sequenced. common, ‘consensus’ sequence.

millions of cells is isolated.

» Single-cell sequencing

Hardly

any DNA ]7/)%

Q“//’XDNA amplification &i

A single cell is difficult to isolate, but The DNA is extracted and amplified, Amplified DNA is sequenced. Errors introduced in earlier steps make

it can be done mechanically or with during which errors can creep in. sequence assembly difficult; the final
an automated cell sorter. sequence can have gaps.

http://scitechdaily.com/images/one-genome-from-many.jpg
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Single-cell Amplification

Digital Expression Matrix: counting unique molecules

Total RNA
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Short Summary

DNA sequencing:

- new amplification methods other than PCR

- statistical methods for SNPs/CNV calling

RNA sequencing:
- standards created for quality control
- can achieve high sequencing depth

- high cell throughput methods arising



Short Summary

Single Cell RNA Sequencing Workflow

RT& Second-strand

Synthesis
s "N
b%‘;
Solid Tissue Dissociation Single Cell Isolation RNA cDNA

(¢ X
Amplified
“‘ AR I
Cell Types e
Identification

t Clustering
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Single-cell Sequencing Sequencing Library Amplified cDNA
Expression Profiles

en.wikipedia.org



Downstream Analysis |

Supervised Analysis
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Cell Population Identification

Unsupervised Analysis

a Obtain an unbiased b Generate single-cell c lIdentify cell types
sample of single cells expression profiles by clustering

®&®
oo ®.2
@ N
e e

Figure 3 | Cell-type discovery by unbiased sampling and transcriptome profiling of single cells.

Shapiro, Ehud, Tamir Biezuner, and Sten Linnarsson. "Single-cell sequencing-based technologies will
revolutionize whole-organism science." Nature Reviews Genetics 14.9 (2013): 618-630.



Downstream Analysis |

1.

How do cell types differ from each other?

|s there any addition diversity in the same cell type?

samples sample
+ —"" annotation

Gene expression

O

= matnx

B 2

'\\‘-\
‘\\
-U\

Gene ‘\ Gene expression
annotati on levels

http://www.people.vcu.edu/~mreimers MDA/gene expression matrix.qif


http://www.people.vcu.edu/~mreimers/OGMDA/gene_expression_matrix.gif

Dimension Reduction |

Principle Component Analysis (PCA)

e.g., visualizing the samples in a smaller subspace

original data space

component space
+ X
| X
oo T TS XK
o TR g X
(4] | T 1= J | ] b
V)
l1=N
L
PC1

hitp://www.nlpca.org/fig_pca_principal _component_analysis.png



http://www.nlpca.org/fig_pca_principal_component_analysis.png

Probability and Linear Algebra Review

Variance / Standard Deviation: measure of the spread of the
data

(Calculation: average distance from the mean of the data)

Covariance: measure of how much each of the dimensions
vary from the mean with respect to each other; measured
between 2 dimensions to see if there is a relationship
between the 2 dimensions

* The covariance between one dimension and itself is the
variance.



Probability and Linear Algebra Review

E.g. for 3 dimensions, consider random vector (x,y,z):

cov(x,x) cov(x,y) cov(x,z)
C= | cov(y,x) cov(yy) cov(y,z)
cov(z,x) cov(z,y) cov(z,z)

Diagonal is the variances of x, y and z
cov(x,y) = cov(y,x) hence matrix is symmetrical about the diagonal
N-dimensional data will result in nxn covariance matrix



Probability and Linear Algebra Review

* The eigenvalue problem is any problem having the
following form:

A.v=A.v
— A: n X n matrix
— V:n X1 non-zero vector
— A\:scalar

* Any value of A for which this equation has a solution is
called the eigenvalue of A and vector v which
corresponds to this value is called the eigenvector of A.



Dimension Reduction |

Principle Component Analysis (PCA)

Gene 3
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Principal component analysis (PCA) converts a set of observations of
possibly correlated variables into a set of values of uncorrelated variables

called principal components.

The first principal component is the projection of the data into a single
dimension that has as high a variance as possible (that is, accounts for as
much of the variability in the data as possible); each succeeding
component in turn has the highest variance possible under the constraint
that it be orthogonal to (uncorrelated with) the preceding components.

Therefore the PCs provide a view on the structure of the data that best
explains its variance.

cf. Wikipedia: Principal component analysis



The example data is two-dimensional, but most of the information is contained
along a dimension shown here by the red vector.
We could thus restrict our analysis to a projection along that vector.




PCA process =STEP 1

e Subtract the mean

from each of the data dimensions. All the x values
have x subtracted and y values have y subtracted

from them. This produces a data set whose mean is
zZero.

Subtracting the mean makes variance and
covariance calculation easier by simplifying their
equations. The variance and co-variance values are
not affected by the mean value.



PCA process —STEP 1

DATA:

2.5
0.5
2.2
1.9
3.1
2.3

1.5
1.1

2.4
0.7
2.9
2.2
3.0
2.7
1.6
1.1
1.6
0.9

ZERO MEAN DATA:

X

Y

.69
-1.31
.39
.09
1.29
49
.19
-.81
-.31
-.71

49
-1.21
.99
.29
1.09
.79
-31
-.81
-.31
-1.01



PCA process =STEP 2

* Calculate the covariance matrix

cov=( .616555556 .615444444
.615444444 716555556

* since the non-diagonal elements in this covariance matrix are positive,
we should expect that both the x and y variable increase together.



PCA process =STEP 3

 Calculate the eigenvectors and eigenvalues of the covariance matrix
eigenvalues = |.0490833989
[ 1.28402771}
eigenvectors =| -.735178656 -.677873399
[ 677873399 —.735178656}



PCA process —STEP 4

* Reduce dimensionality and form feature vector the eigenvector
with the highest eigenvalue is the principle component of the
data set.

* In our example, the eigenvectorwith the larges eigenvalue was
the one that pointed down the middle of the data.

* Once eigenvectors are found from the covariance matrix, the
next step is to order them by eigenvalue, highest to lowest. This
gives you the componentsin order of significance.



PCA process =STEP 4

* Now, if you like, you can decide to ignore the components of lesser
significance

* You do lose some information, but if the eigenvalues are small, you
don’t lose much

n dimensions in your data

calculate n eigenvectors and eigenvalues
choose only the first p eigenvectors

final data set has only p dimensions.



Dimension Reduction .

Principle Component Analysis (PCA)

* |inear multivariate statistical analysis

understand underlying data structures

identify bias, experimental errors, batch effects

e visualize the samples in a smaller subspace

(dimension reduction)

visualize the relationship between variables
(correlation analysis)
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Key quantities

high-dimensional
joint distribution

T oy 1ij

Kullback-Leibler divergence

(to be minimized) low-dimensional

joint distribution


https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence

Cluster Analysis

Cluster: a collection of data objects
Similar to the objects in the same cluster (Intraclass similarity)
Dissimilar to the objects in other clusters (Interclass dissimilarity)
Cluster analysis
Statistical method for grouping a set of data objects into clusters
A good clustering method produces high quality clusters with high
intraclass similarity and low interclass similarity
Clustering is an unsupervised classification method
Can be a stand-alone tool or as a preprocessing step for other algorithms




Cluster Analysis

Group objects according to their similarity

Cluster:

a set of objects
that are similar
to each other
and separated
from the other
objects.

Example: green/
red data points
were generated

-2

from two different

normal distributions
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Hierarchical Clustering

* This produces a binary
tree or dendrogram

* The final clusteris the
root and each data item
is a leaf

* The height of the bars
indicate how close the
1 2 ?I_—L SI‘__L 9 10 IS——I|3 1M1 12 13 14 15 16 items are




Hierarchical Clustering

Start with every data point in a separate cluster
Keep merging the most similar pairs of data points/clusters until we
have one big cluster left

This is called a bottom-up or agglomerative method



Hierarchical Clustering

Levels of Clustering
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c) Three Clusters
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Hierarchical Clustering,

Linkage in Hierarchical Clustering

We already know about distance measures between data
items, but what about between a data item and a cluster or
between two clusters?

We just treat a data point as a cluster with a single item, so our
only problem is to define a linkage method between clusters

As usual, there are lots of choices...



Hierarchical Clustering

Average Linkage

e Definition
 Each cluster ci is associated with a mean vector wi which is
the mean of all the data items in the cluster

* The distance between two clusters ci and ¢j is then just
d(wi, w)
* This is somewhat non-standard — this method is usually
referred to as centroid linkage and average linkage is defined

as the average of all pairwise distances between points in
the two clusters



Hierarchical Clustering

Single Linkage

* The minimum of all pairwise distances between points in the two clusters

* Tends to produce long, “loose” clusters
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Hierarchical Clustering

Complete Linkage

* The maximum of all pairwise distances between points in the two clusters

* Tends to produce very tight clusters
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Hierarchical Clustering

Distances between clusters (summary)

e Calculation of the distance between two clusters

is based on the pairwise distances between ®

members of the clusters. | eoeog

* Complete linkage: largest distance between ® ®
points ®

* Average linkage: average distance between \‘
paris of points O “

* Single linkage: smallest distance between °®
points —9

e Centroid: distance between centroids

Complete linkage gives preference to compact/spherical
clusters. Single linkage can produce long stretched clusters.



Hierarchical Clustering,

* Major advantage
* Conceptually very simple
e Easy to implement 2 most commonly used technique

* Major weakness of agglomerative clustering methods

* do not scale well: time complexity of at least O(n2), where n is
the number of total objects

* can never undo what was done previously =2 high likelihood of
getting stuck in local minima




Other Challenges



Batch Effects Occur

the batch effect represents the systematic technical differences
when samples are processed and measured in different batches

and which are unrelated to any biological variation recorded
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PC,
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Batch Effects Occur

Before batch effect removal After batch effect removal

o _|
<
o _|
Al
O p—
o X
O
a
o
8
o
3 -
O Plate1 v Plate 6
< 8 _ Plate2 X Plate 7
O Plate1 + Plate 3 < Plate 5 ® Plate 7 ' + Plate 3 * Plate 8
A Plate 2 x Plate 4 v Plate 6 Plate 8 X Plate4 < Plate 9
X < Plate5 @ Plate 10
o
| | I I | | | @ T I | | I | | I
-150 -100 -50 0 50 100 150 -60 -40 -20 0 20 40 60 80
I:>C1 PC1

http://scholarscompass.vcu.edu/cgi/viewcontent.cgi?article=4179&context=etd



http://scholarscompass.vcu.edu/cgi/viewcontent.cgi?article=4179&context=etd

Sequencing Depth
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Biological Effects
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Computational analysis of cell-to-cell heterogeneity
In single-cell RNA-sequencing data reveals hidden
subpopulations of cells

Florian Buettner!>>>, Kedar N Natarajan?3->, F Paolo Casale?, Valentina Proserpio®3, Antonio Scialdone®?,
Fabian J Theis!4, Sarah A Teichmann?3, John C Marioni?>? & Oliver Stegle?

Observed expression profile

Expression range of
differentiation gene

Genes annotated
to cell-cycle Y o o o ® Y o0 Y

@@@@3@@ o ®

Removing the effect of cell cycle

(@@e m

Expression range of

Genes not annotated > y differentiation gene
to cell-cycle @ Differentiation




Full example: DropsSeo
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Macosko, Evan Z., et al. "Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets." Cell 161.5 (2015): 1202-1214.



Full example: DropSeq
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Macosko, Evan Z., et al. "Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets." Cell 161.5 (2015): 1202-1214.



