
CS262 Winter 2016 

Single Cell Sequencing  



Background
NATURE METHODS | METHAGORA

significant increase in publications  
and data in the last two years



Background
Single-cell analyses of transcriptional heterogeneity
during drug tolerance transition in cancer cells by
RNA sequencing
Mei-Chong Wendy Leea,1, Fernando J. Lopez-Diazb,1, Shahid Yar Khana,2, Muhammad Akram Tariqa,3, Yelena Daync,
Charles Joseph Vasked, Amie J. Radenbaugha, Hyunsung John Kima, Beverly M. Emersonb,4, and Nader Pourmanda,4

aBiomolecular Engineering Department, University of California, Santa Cruz, CA 95064; bLaboratory of Regulatory Biology, The Salk Institute for Biological
Studies, La Jolla, CA 92037; cTransgenic Core Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037; and dFive3 Genomics, LLC, Santa Cruz, CA 95060

Edited by Lewis T. Williams, Five Prime Therapeutics, Inc., South San Francisco, CA, and approved September 29, 2014 (received for review March 12, 2014)

The acute cellular response to stress generates a subpopulation of
reversibly stress-tolerant cells under conditions that are lethal to
the majority of the population. Stress tolerance is attributed to
heterogeneity of gene expression within the population to ensure
survival of a minority. We performed whole transcriptome se-
quencing analyses of metastatic human breast cancer cells sub-
jected to the chemotherapeutic agent paclitaxel at the single-cell
and population levels. Here we show that specific transcriptional
programs are enacted within untreated, stressed, and drug-
tolerant cell groups while generating high heterogeneity between
single cells within and between groups. We further demonstrate
that drug-tolerant cells contain specific RNA variants residing in
genes involved in microtubule organization and stabilization, as
well as cell adhesion and cell surface signaling. In addition, the
gene expression profile of drug-tolerant cells is similar to that of
untreated cells within a few doublings. Thus, single-cell analyses
reveal the dynamics of the stress response in terms of cell-specific
RNA variants driving heterogeneity, the survival of a minority
population through generation of specific RNA variants, and the
efficient reconversion of stress-tolerant cells back to normalcy.
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Amajor barrier to successful cancer treatment is the re-
currence of cancer cells with acquired resistance to che-

motherapy (1–3). However, the molecular events underlying cancer
cell evolution toward a drug-resistant phenotype are largely un-
known. Recent studies using next-generation sequencing (NGS)
systems have attempted to identify the genetic changes that drive
tumorigenesis and resistance to treatments (4, 5). These sequenc-
ing studies have revealed that many of the resistance-imparting
mutations identified are different from tumor to tumor. In addition
to heterogeneity across tumors from different patients, intratumor
heterogeneity adds another level of complexity. Minor sub-
populations of cancer cells can harbor aberrations that are asso-
ciated with resistance to therapy and tumor progression (6–8).
Thus, treatments may be effective against the majority of the tu-
mor, but a small population of resistant cells can cause the per-
sistence, recrudescence, or recurrence of cancer that is refractory
to further treatment. Sequencing studies on bulk tumor tissue can
only identify mutations present in subpopulations of a heteroge-
neous tumor in a limited capacity. By sequencing the transcriptome
of single cells in depth, low abundance mutations can be detected
that will facilitate identifying the drivers of drug resistance.
Recent advances have enabled the analysis of DNA and RNA

within a single cell. The coupling of whole genome amplification
and DNA sequencing have allowed multiple groups to study the
genetics of single cells, but not without significant amplification
biases (9–11). Moreover, single-cell exome sequencing con-
firmed the clonal heterogeneity of a solid tumor identifying key
mutations across much of the genome (12). DNA sequencing can
identify mutations across the genome, but is unable to illuminate
expressional differences that can contribute significantly to drug

resistance. Multiplexed single-cell quantitative PCR (qPCR)
assays allow expression-based analysis of up to 96 targets in
a single experiment (13). Recently, a few groups have demon-
strated that RNA-Seq of single cells using NGS technology is
feasible, reproducible, and usable for gene expression-based
classification of cell subpopulations (14–17). A major advantage
of RNA-Seq in single-cell studies is that the entire transcriptome
can be surveyed, rather than a limited number of genes. DNA
and RNA methodologies are not mutually exclusive and can be
combined to generate more biologically significant information.
Paclitaxel (Taxol) is a chemotherapy drug commonly used to

treat solid cancers including breast tumors (18). This toxin targets
microtubules to interfere with the mitotic spindle, resulting in cell
cycle arrest and ultimately apoptosis. Paclitaxel treatment kills
most tumor cells but, for the residual cancer cells, the mechanisms
of resistance are unclear (18). An important question is whether
mutations that drive drug resistance are common in a population
or arise from unique mutations in individual cells.

Significance

Tumor cells are heterogeneous, and much variation occurs at the
single-cell level, which may contribute to therapeutic response.
Here, we studied drug resistance dynamics in a model of toler-
ance with a metastatic breast cancer cell line by leveraging the
power of single-cell RNA-Seq technology. Drug-tolerant cells
within a single clone rapidly express high cell-to-cell transcript
variability, with a gene expression profile similar to untreated
cells, and the population reacquires paclitaxel sensitivity. Our
gene expression and single nucleotide variants analyses suggest
that equivalent phenotypes are achieved without relying on
a unique molecular event or fixed transcriptional programs.
Thus, transcriptional heterogeneity might ensure survival of
cancer cells with equivalent combinations of gene expression
programs and/or single nucleotide variants.
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SUMMARY

Embryonic stem cell (ESC) culture conditions are
important for maintaining long-term self-renewal,
and they influence cellular pluripotency state. Here,
we report single cell RNA-sequencing of mESCs
cultured in three different conditions: serum, 2i, and
the alternative ground state a2i. We find that the
cellular transcriptomes of cells grown in these condi-
tions are distinct, with 2i being the most similar to
blastocyst cells and including a subpopulation
resembling the two-cell embryo state. Overall levels
of intercellular gene expression heterogeneity are
comparable across the three conditions. However,
thismasks variable expression of pluripotency genes
in serum cells and homogeneous expression in 2i
and a2i cells. Additionally, genes related to the cell
cycle are more variably expressed in the 2i and a2i
conditions. Mining of our dataset for correlations in
gene expression allowed us to identify additional
components of the pluripotency network, including
Ptma and Zfp640, illustrating its value as a resource
for future discovery.

INTRODUCTION

Mouse embryonic stem cells (mESCs) are derived ex vivo from
the inner cell mass of the developing blastocyst. They are
characterized by their capacity for in vitro self-renewal and the
preservation of developmental pluripotency to reconstitute em-
bryonic lineages (Bradley et al., 1984; Evans and Kaufman,
1981; Martin, 1981). Genetic studies have established the role
of Oct4 (Nichols et al., 1998), Sox2 (Avilion et al., 2003), Nanog
(Chambers et al., 2003; Mitsui et al., 2003) and Esrrb (Festuccia
et al., 2012) as the signature core factors in the pluripotency tran-
scriptional network of mESCs (Chen et al., 2008; Loh et al., 2006;
Marson et al., 2008).

Maintenance of self-renewal in vitro is dependent on the inter-
play between extracellular cues and the pluripotency network.
This is conventionally achieved through combinatorial stimulation
of the JAK-STAT pathway and ID proteins by cytokine leukemia
inhibitory factor (LIF) and fetal calf serum (serum)/bone morpho-
genetic proteins (BMPs), respectively (Smith et al., 1988;Williams
et al., 1988; Ying et al., 2003). mESCs propagated in serum/LIF
conditions remain exposed to differentiation cues from autocrine
fibroblast growth factor 4 (FGF4) or LIF through the RAS-ERK
signaling pathway (Burdon et al., 1999; Kunath et al., 2007;
Niwa et al., 2009;Ying et al., 2008), althoughgenetic and chemical
inhibition of the FGF-ERK pathway alone is able to prevent differ-
entiation (Kunath et al., 2007). These findings led to the establish-
ment of the concept of ‘‘ground state pluripotency,’’ where differ-
entiation cues are shielded, and the pluripotency network is
intrinsically stable (Nichols and Smith, 2009; Ying et al., 2008).
With additional inhibition of glycogen synthase kinase 3

(GSK3), ground state mESCs can be robustly maintained
in vitro in the chemically defined 2i condition. Dual inhibition of
GSK3 and ERK promotes self-renewal by alleviating TCF3-medi-
ated repression, activating Esrrb expression, reducing degrada-
tion of KLF2 (Martello et al., 2012; Wray et al., 2011; Yeo et al.,
2014), and inducing Tfcp2l1 in concert with LIF (Ye et al., 2013).
Substituting ERK kinase inhibition with inhibition of members of
the SRC tyrosine kinase family can enable maintenance of an
alternative ground state, alternative 2i, or a2i (Li et al., 2011; Shi-
mizu et al., 2012). As SRC tyrosine kinase inhibition only partially
reduces phosphorylation of ERK kinase (Shimizu et al., 2012), its
effect on differentiation is not limited to convergent upstream in-
hibition of the FGF-ERK pathway. It has instead been suggested
to block the epithelial-mesenchymal transition downstream of
both the calcineurin-NFAT and the FGF-ERK pathways (Li
et al., 2011) and stop differentiation bymechanical stress through
an ERK-independentmechanism (Shimizu et al., 2012). Thus, the
self-renewing pluripotent state of mESCs can be achieved
through manipulation of key signaling pathways in vitro.
Despite sharing a common origin and defining properties,

mESCs propagated under different culture conditions also differ
(Ficz et al., 2013; Marks et al., 2012). For instance, serum/LIF-
maintained mESCs are morphologically heterogeneous and
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SUMMARY

Heterogeneity within the self-renewal durability of
adult hematopoietic stem cells (HSCs) challenges
our understandingof themolecular frameworkunder-
lying HSC function. Gene expression studies have
been hampered by the presence of multiple HSC
subtypes and contaminating non-HSCs in bulk HSC
populations. To gain deeper insight into the gene
expression program of murine HSCs, we combined
single-cell functional assays with flow cytometric in-
dex sorting and single-cell gene expression assays.
Through bioinformatic integration of these datasets,
we designed an unbiased sorting strategy that sepa-
rates non-HSCs away from HSCs, and single-cell
transplantation experiments using the enriched pop-
ulation were combined with RNA-seq data to iden-
tify key molecules that associate with long-term
durable self-renewal, producing a single-cell mole-
cular dataset that is linked to functional stem cell
activity. Finally, we demonstrated the broader appli-
cability of this approach for linking key molecules
with defined cellular functions in another stem cell
system.

INTRODUCTION

Hematopoiesis is one of the best describedmodels of adult stem
cell biology due to the accessibility of tissue and the ability to
isolate and functionally characterize multiple stages of a clearly

defined hierarchy of differentiation (Bryder et al., 2006; Ema
et al., 2014). HSCs can divide symmetrically, producing two
HSCs or two progenitor cells, or asymmetrically, giving rise to
an HSC and a progenitor cell. On a population level, these fate
choices must be tightly regulated to maintain the HSC pool
size throughout life while still supplying the required numbers
and types of mature blood cells needed by the organism.
Single-cell and serial transplantation studies have revealed
significant heterogeneity in both the mature cell production
and self-renewal durability of individual HSCs (Beerman et al.,
2010; Dykstra et al., 2007; Goodell et al., 1996; Morita et al.,
2010). This functional heterogeneity is thought to be controlled
via cell intrinsic and extrinsic mechanisms (Copley and Eaves,
2013; Wilkinson and Göttgens, 2013) and is thought to play a
role in disease evolution (Prick et al., 2014).
Advances in multiparameter flow cytometry have permitted

isolation of HSCs for single-cell functional assays of cellular
fate choice (Dykstra et al., 2007; Kent et al., 2008; Naik et al.,
2013; Rieger et al., 2009). Because of the retrospective nature
of these assays, individual cells shown to possess HSC proper-
ties are no longer available for molecular analyses. A long-stand-
ing goal in the field has been the identification of phenotypically
and functionally pure HSCs, both in terms of cell surface
marker expression and regenerative capacity upon transplanta-
tion. While this has led to the identification of dozens of
markers that enrich for HSC populations containing long-term
HSCs (LT-HSCs), it is unclear which cells are HSCs and
which are contaminating cells within any given HSC-enriched
population.
To address the issue of molecular and functional heterogene-

ity in HSCs, we took an integrated single-cell approach. Using
four commonly used HSC purification strategies, we performed
single-cell gene expression in combination with flow cytometric
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Relaxation of the protein electron spin is an im-
portant parameter to characterize the environment,
including information on molecular dynamics.
Here, we deduced the longitudinal relaxation time
of the spin label from Fig. 4B. The red circles de-
note the interaction signal between the NV center
and the spin label; the black dots show the NV
center decoherence curvewithout operation on the
spin label. Simulation (solid curves) shows a relax-
ation time of 4 ms. These values are compatible
with those for spin labels inensemblemeasurements,
as the relaxation time of this kind of spin label
is ~110 ms at liquid nitrogen temperature (21, 24).
The ability to address single-electron spin la-

bels on proteins adds another element to the
emergingdiamond sensor–based toolbox for ultra-
precise structure determination. Together with
the recently established nuclear magnetic reso-
nance (NMR) detection, the present method ex-
tends the sensing range to dozens of nanometers,
whereas diamond sensor–basedNMRonly senses
nuclear spins in very close proximity (a few na-
nometers) to the NV center (26–29). The interac-
tion between the spin label and the neighboring
nuclei could be used to sensemore distant nuclei
and provide structural and dynamical informa-
tion otherwise inaccessible by the sensor. In this
respect, it is particularly encouraging that we
find long spin relaxation times enabling coher-
ent spin driving at the protein. This capability
will allow the use of the ancillary electron spin
for sophisticated coherent control (30, 31), there-
by facilitating future polarization transfer experi-
ments that could gain access to nuclear spins in
proteins, including proton or 13C spins. When
combined with either scanning magnetometry
or nanoscale magnetic resonance imaging based
on magnetic field gradients, protein structure
analysis under ambient conditions at the level of
a single molecule is within reach (32, 33).
.
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Cell types in the mouse cortex and
hippocampus revealed by
single-cell RNA-seq
Amit Zeisel,1* Ana B. Muñoz-Manchado,1* Simone Codeluppi,1 Peter Lönnerberg,1
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Jens Hjerling-Leffler,1† Sten Linnarsson1†

The mammalian cerebral cortex supports cognitive functions such as sensorimotor integration,
memory, and social behaviors. Normal brain function relies on a diverse set of differentiated
cell types, including neurons, glia, and vasculature. Here,we have used large-scale single-cell RNA
sequencing (RNA-seq) to classify cells in themouse somatosensory cortex and hippocampal CA1
region.We found 47molecularly distinct subclasses, comprising all knownmajor cell types in the
cortex.We identified numerous marker genes, which allowed alignment with known cell types,
morphology, and location.We found a layer I interneuron expressing Pax6 and a distinct
postmitotic oligodendrocyte subclass marked by Itpr2. Across the diversity of cortical cell types,
transcription factors formed a complex, layered regulatory code, suggesting amechanism for the
maintenance of adult cell type identity.

T
he brain is built from a large number of
specialized cell types, enabling highly re-
fined electrophysiological behavior, as well
as fulfilling brain nutrient needs and defense
against pathogens. Functional specialization

allows fine-tuning of circuit dynamics and decou-
pling of support functions such as energy supply,
waste removal, and immune defense. Cells in the
nervous system have historically been classified
using location, morphology, target specificity, and

1138 6 MARCH 2015 • VOL 347 ISSUE 6226 sciencemag.org SCIENCE

Fig. 4. Coherence and relaxation of protein spin. (A) Rabi oscillation of single spin label measured by
using the sequence in Fig. 1B (fixing t0 and RF frequency at middle peak, varying t). The solid curve is a fit
using a sine function with exponential damping. (B) The red circles are measured by the double electron-
electron resonance sequences on NV sensor and protein spin (fixing t equal to spin label p pulse and RF
frequency to the central peak, varying t0).The black dot is the NVcenter decoherence curve without protein
spin flipping. The solid curves show the best simulation of both of the experimental results in (B), corres-
ponding to a relaxation time of 4 ms for the spin label and 90 kHz coupling between spin label and NVcenter.
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In Brief
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in tiny droplets enables large-scale,
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Clonal evolution in breast cancer revealed
by single nucleus genome sequencing
Yong Wang1, Jill Waters1, Marco L. Leung1,2, Anna Unruh1, Whijae Roh1, Xiuqing Shi1, Ken Chen3, Paul Scheet2,4, Selina Vattathil2,4,
Han Liang3, Asha Multani1, Hong Zhang5, Rui Zhao6, Franziska Michor6, Funda Meric-Bernstam7 & Nicholas E. Navin1,2,3

Sequencing studies of breast tumour cohorts have identified many prevalent mutations, but provide limited insight into
the genomic diversity within tumours. Here we developed a whole-genome and exome single cell sequencing approach
called nuc-seq that uses G2/M nuclei to achieve 91% mean coverage breadth. We applied this method to sequence single
normal and tumour nuclei from an oestrogen-receptor-positive (ER1) breast cancerand a triple-negative ductal carcinoma. In
parallel, we performed single nuclei copy number profiling. Our data show that aneuploid rearrangements occurred early in
tumour evolution and remained highly stable as the tumour masses clonally expanded. In contrast, point mutations evolved
gradually, generating extensive clonal diversity. Using targeted single-molecule sequencing, many of the diverse mutations
were shown to occur at low frequencies (,10%) in the tumour mass. Using mathematical modelling we found that the
triple-negative tumour cells had an increased mutation rate (13.33), whereas the ER1 tumour cells did not. These findings
have important implications for the diagnosis, therapeutic treatment and evolution of chemoresistance in breast cancer.

Human breast cancers often display intratumour genomic heterogeneity1–3.
This clonal diversity confounds the clinical diagnosis and basic research
of human cancers. Expression profiling has shown that breast cancers
can be classified into five molecular subtypes that correlate with the pre-
sence of oestrogen, progesterone and Her2 receptors4. Among these,
triple-negative breast cancers (ER2/PR2/Her22) have been shown to har-
bour the largest number of mutations, whereas luminal A (ER1/PR1/
Her22) breast cancers show the lowest frequencies5–7. These data sug-
gest that triple-negative breast cancers (TNBCs) may have increased
clonal diversity and mutational evolution, but such inferences are dif-
ficult to make in bulk tissues8,9. To gain better insight into the genomic
diversity of breast tumours, we developed a single cell genome sequen-
cing method and applied it to study mutational evolution in an ER1

breast cancer (ERBC) and a TNBC patient. We combined this approach
with targeted duplex10 single-molecule sequencing to profile thousands
of cells and understand the role of rare mutations in tumour evolution.

Whole-genome sequencing using G2/M nuclei
In our previous work we developed a method using degenerate-
oligonucleotide PCR and sparse sequencing to measure copy number
profiles of single cells11. Although adequate for copy number detection,
this method could not resolve genome-wide mutations at base-pair reso-
lution. We attempted to increase coverage by deep-sequencing these
libraries, but found that coverage breadth approached a limit near 10%
(Fig. 1a). To address this problem, we developed a high-coverage, whole-
genome and exome single cell sequencing method called nuc-seq (Ex-
tended Data Fig. 1). In this method we exploit the natural cell cycle, in
which single cells duplicate their genome during S phase, expanding
their DNA from 6 to 12 picograms before cytokinesis. This approach
provides an advantage over using chemical inhibitors to induce poly-
ploidy in single cells12,13 because it does not require live cells.

We input four (or more) copies of each single cell genome for whole-
genome-amplification (WGA) to decrease the allelic dropout and false

positive error rates, which are major sources of error during multiple-
displacement amplification (MDA)14,15. Additionally, we limit the MDA
time to 80 min to mitigate false positive (FP) errors associated with the
infidelity of the w29 polymerase (Methods). The improved amplifica-
tion efficiency can be shown using 22 chromosome-specific primer pairs
for PCR (Extended Data Fig. 2). In G1/G0 single cells we find that only
25.58% (11/43) of the cells show full amplification of the chromosomes,
whereas G2/M cells have 45.34% (39/86). After MDA, we incubate the
amplified DNA with a Tn5 transposase, which simultaneously fragments
DNA and ligates adapters for sequencing16. The libraries are then multi-
plexed for exome capture or used directly for next-generation sequencing.

Method validation in a monoclonal cancer cell line
To validate our method we used a breast cancer cell line (SK-BR-3) that
was previously shown to be genetically monoclonal11,17. We evaluated
the genetic homogeneity of this cell line using spectral karyotyping and
found that large chromosome rearrangements were highly stable in
85.80% of the single cells (Supplementary Table 1). We also performed
single nucleus sequencing (SNS)11,18 on 50 single SK-BR-3 cells and cal-
culated copy number profiles at 220 kilobase (kb) resolution, which
showed that the major amplifications of MET, MYC, ERBB2, BCAS1
and a deletion in DCC were stable (mean R2 5 0.91) in all of the 50 cells
(Fig. 1b). Next, we deep-sequenced the SK-BR-3 cell population (SKP)
at high coverage depth (513) and breadth (90.40%) and detected single-
nucleotide variants (SNVs), copy number aberrations (CNAs) and struc-
tural variants (SVs) using our processing pipeline (Methods). We filtered
the variants using dbSNP135 and identified 409 non-synonymous var-
iants and 1,452 structural variants (Fig. 1d), several of which occurred in
cancer genes (Supplementary Table 2).

We applied nuc-seq to sequence the whole genomes of two single
SK-BR-3 cells (SK1 and SK2) and calculated coverage depth, breadth
(sites with at least one read) and uniformity (evenness). We found that
both SK-BR-3 cells achieved high coverage depth (613 6 5 s.e.m., n 5 2)
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             Tumors evolve from single cells. During this 
evolutionary process, cancer cells diverge 
and form distinct lineages, resulting in intra-
tumor heterogeneity. � is clonal diversity is 
likely to play an important role during cancer 
progression, when the population of tumor 
cells encounters selective pressures in the 
tumor microenvironment, including the im-
mune system, hypoxia, nutrient deprivation, 
geographical barriers, pH changes, and che-
motherapy. However, there is currently a large 
gap in knowledge regarding our understand-
ing of clonal diversity and its role in impor-
tant biological processes that occur in cancer, 
such as invasion, clonal evolution, metasta-
sis, and evolving resistance to therapy. Our 
poor understanding of clonal diversity stems 
from the fact that we cannot accurately mea-
sure it. Standard genomic techniques such as 
microarrays and next-generation sequenc-
ing methods require micrograms of DNA 
or RNA as input material and thus report 
an average signal from a complex popula-
tion of cells. � ese methods average together 
mutations from multiple subpopulations and 
mask the presence of rare tumor clones that 
may play an important role in tumor progres-
sion. To address this problem, we pioneered 
the development of a single-cell sequenc-
ing (SCS) method to study cancer progres-
sion (1), which helped to establish the � eld 
of single-cell genomics. � is � eld has shown 
tremendous growth over the past four years, 
due to the myriad of applications in cancer 
research and biomedicine.

INTRATUMOR HETEROGENEITY

My interest in intratumor heterogeneity 
took root when I was a graduate student at 

the Cold Spring Harbor Laboratory, work-
ing under the mentorship of Michael Wigler 
and James Hicks. During this time, we dis-
covered the existence of normal copy num-
ber variants (CNVs) in the human popula-
tion (2), and I became enthralled with the 
question of whether genomic diversity exist-
ed within tumor cell populations. However, 
at this time, the tools needed to study this 
problem did not exist. � us, I spent my grad-
uate career developing a method that com-
bined macrodissection of spatial regions in 
tumors and � ow-sorting by DNA ploidy to 
isolate tumor subpopulations and study an-
euploidy evolution (3). Although these data 
on tumor subpopulations were informative, 
they still re� ected a complex admixture of 
tumor cell genomes. To overcome this prob-
lem, I developed a computational algorithm 
(PROBER) to design tiling-oligonucleotide 
FISH probes (4) and applied it to study 
the clonal substructure of breast tumors at 
single-cell resolution. � is approach could 
resolve intratumor heterogeneity at single-
cell resolution, but it was limited to report-
ing copy number aberrations at targeted re-
gions in the genome. � erefore, it was not 
possible to accurately reconstruct tumor 
evolution, which required a large number of 
genomic markers. It soon became clear that 
genome-wide single-cell sequencing data 
were needed, despite the formidable techni-
cal challenge it presented at the time.

SINGLE�CELL GENOMICS

As a postdoctoral student, I overcame this 
challenge by developing a single-cell ge-
nome sequencing method (1). � is study 
was important for two reasons: (i) it demon-
strated the technical feasibility of sequenc-
ing the genome of a single cell, and (ii) it 
showed that single-cell genomic data could 
be used to reconstruct tumor evolution. � e 
method we developed was called single-
nucleus sequencing (SNS), and it combined 
� ow-sorting, whole-genome ampli� cation, 
and next-generation sequencing to generate 

genome-wide datasets from single cancer 
cells. We applied SNS to study copy num-
ber changes in breast tumors, revealing a 
punctuated model of chromosome evolu-
tion, in which hundreds of rearrangements 
occurred in short bursts, followed by stable 
clonal expansions to form the tumor mass. 
� ese data challenged the paradigm of grad-
ual evolution (5, 6), which posited that copy 
number changes accumulated gradually and 
sequentially over time, leading to more ma-
lignant stages of cancer.

A� er this work, I established an inde-
pendent research laboratory at the MD An-
derson Cancer Center. Our group focuses 
on applying SCS methods to study clonal 
evolution and diversity in the context of 
invasion, metastasis, and resistance to che-
motherapy in breast cancer. However, the 
initial di�  culty we faced was that these 
processes were driven by point mutations 
and indels, which required high-coverage 
single-cell data. � e technical hurdle was 
that the original SNS method was limited to 
generating about 10% physical coverage of a 
single cell’s genome, which was su�  cient for 
measuring large-scale (54 kb) copy number 
changes but insu�  cient for resolving muta-
tions at base-pair resolution. To overcome 
this challenge, we developed a method 
called nucleus sequencing (Nuc-Seq), which 
combines single-cell � ow-sorting, multiple-
displacement-ampli� cation, tagmentation, 
and next-generation sequencing to achieve 
high-coverage (>90%) data from single 
mammalian cells (7, 8).

We applied Nuc-Seq to study several im-
portant questions in cancer biology. First, 
we investigated the mutator phenotype 
hypothesis, which posits that cancers are 
driven by increased mutation rates (9). � e 
question we posed is whether most human 
cancers show an increased number of muta-
tions a� er each cell division, or alternatively 
whether tumors accumulate large frequen-
cies of mutations through increased cell 
proliferation at a low or normal error rate 
(about 1 error per cell division). By sequenc-
ing the genomes of single breast tumor cells, 
we showed that triple-negative breast cancer 
patients had increased mutation rates (mean 
13X) compared to normal breast cells, but 
estrogen receptor positive patients did not. 
Furthermore, the single-cell data revealed 
that breast tumors harbor hundreds of 
ultra-rare mutations (URMs) that occur at 
low frequencies (<1%) in the tumor mass. In 
addition, these data clearly showed that no 
single tumor cells are genetically identical 
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Single-cell sequencing methods are revolutionizing cancer research and medicine by 
providing powerful tools to investigate intratumor heterogeneity and rare subpopulations.
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Developmental Biology

How do animals grow and 
develop from a single cell?



Developmental Biology



Developmental Biology

• Discover more complicated mechanisms in 
cellular development 

• Confirm the distinct gene expression 
signatures across different cell types 

• Identify functional differences among the 
same cell cell type

We need single-cell resolution to:



• Developmental Biology  

• Cancer Biology 
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• Neurology 

Applications



Cancer Biology

http://www.mun.ca/biology/desmid/brian/
BIOL2060/BIOL2060-24/CB24.html
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Cancer Biology

Tumors are composed of 
genetically and phenotypically 
heterogeneous clones

http://www.thetcr.org/article/viewFile/1415/html/10439
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Cancer Biology

Deep (bulk) sequencing can only 
capture 1% of the cell population 
(excluding some types such as 
circulating tumor cells).

http://www.thetcr.org/article/viewFile/1415/html/10439
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Cancer Biology

• Find evidence for models of cancer 

• Infer timing of mutations and the drivers 

• Evaluate effectiveness of targeted therapy

We need single-cell resolution to:
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• Microbiology  

• Neurology 

Applications
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Microbiology



Microbiology
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Microbiology

• Discover low-abundance species that are are 
difficult to culture in vitro  

• Monitor transcriptional gene activation 
mechanisms for functional annotation 

We need single-cell resolution to:



• Developmental Biology  

• Cancer Biology  

• Microbiology  

• Neurology 

Applications



Neurology

https://www.sciencemag.org/content/341/6141/1237758/embed/inline-graphic-1.gif
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Neurology



Neurology

• Study the mosaic genomes of individual 
neurons and compositions in the brain 

• Follow genetic variations during fetal 
development 

• Develop targeted therapy for neurological 
diseases for specific cell types

We need single-cell resolution to:



One Cell at a Time

Bo Wang, Jason Zhu 
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Single-Cell Technologies

(i) isolate single cells 

(ii) amplify genome efficiently   

(iii) sequence DNA

30 Single Cell Research

SAMPLE PREPARATION

There are many options available to isolate a single cell from a heterogeneous 

population of cells.72 In addition to well-established methods, such as fluorescence 

activated cell sorting (FACS), microscopy, and the use of antibody capture for cell 

separation, there is an increasingly ingenious armamentarium of modern methods 

to isolate single cells with ever greater accuracy and specificity.73,74 The most critical 

part of single-cell analysis is sample preparation, where specific cells need to be 

accurately isolated from a heterogeneous population.75 This section highlights 

commonly used and novel techniques for isolation of single cells from suspension 

or tissues.

Single cells from dissociated tissues are directly sorted into 96-well plates for analysis.

72. Navin N. and Hicks J. (2011) Future medical 
applications of single-cell sequencing in can-
cer. Genome Med 3: 31

73. Yilmaz S. and Singh A. K. (2012) Single cell 
genome sequencing. Curr Opin Biotechnol 23: 
437-443

74. Moon S., Kim Y. G., Dong L., Lombardi M., 
Haeggstrom E., et al. (2011) Drop-on-demand 
single cell isolation and total RNA analysis. 
PLoS One 6: e17455

75. Saliba A. E., Westermann A. J., Gorski S. 
A. and Vogel J. (2014) Single-cell RNA-seq: 
advances and future challenges. Nucleic Acids 
Res 42: 8845-8860
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Cell Sorting

when choosing one for your analysis (Table 2; see also Okaty
et al., 2011). First, there are differences in how the cells are
treated. Manual sorting and FACS generally use protease-
treated cells, a potential stress, and the cells remain alive during
the lengthy isolation procedure, which may alter gene expres-
sion (Richardson et al., 2015). Since cells need to be dissociated
from each other, non-specific RNAs from lysed cells may stick to
the cells of interest, causing contamination. FACS and manual
approaches may have significantly less contamination from
other cell types than LCM (Okaty et al., 2011). LCM can reach
the resolution of a few micrometers; however, contamination
by neighboring cells or missing segments (e.g., axon branches)
in tightly packed tissues are to be expected (Cheng et al., 2013).

Second, material and time constraints must be considered.
Manual sorting is slow relative to FACS and LCM. With manual
sorting, tens to hundreds of cells can be collected (Hempel
et al., 2007; Nagoshi et al., 2010). In practice, since ChIP-seq re-
quires at least hundreds of cells (Lara-Astiaso et al., 2014), the
manual isolationmethod is essentially limited to gene expression
profiling. Chromatin analyses are possible with LCM and FACS
(Weake et al., 2011). Using LCM, it is reasonable to collect cell
numbers in the high hundreds, and for FACS thousands of cells
can be readily purified. Although faster thanmanual sorting, LCM
and FACS remain time-consuming, particularly for rare cell types
within a complex sample.

The last consideration is the cost of the experiment and the
access to specialized equipment. Both LCM and FACS require
relatively expensive, often overbooked equipment that needs
specialist training. In contrast, manual sorting has a simple

setup, no state-of-the-art equipment is needed, and it can be
widely applied, but requires a lab member spending long hours
sorting cells, which adds to the experimental cost.

II: Measuring Transcription Activity and Chromatin
States within the Nucleus
Whole-cell transcriptomes provide an overview of the steady-
state mRNA levels. However, analyzing newly synthesized RNA
transcripts within the nucleus is a more direct measure of
transcriptional activity of individual genes. In addition, isolating
cell-type-specific nuclei allows the efficient purification of cell-
type-specific chromatin. Isolating nuclei facilitates an array of
techniques for studying chromatin and transcriptional regulation,
such as transcription factor binding sites, which can reveal
the gene-regulatory mechanisms controlling the expression of
specific genes (Bonn et al., 2012a). Chromatin structure, which
is instrumental in cell-type-specific gene regulation, can also
be probed by studying three-dimensional organization of nuclei
(Ghavi-Helm et al., 2014). Further, post-translational modifica-
tions of histones and DNA modifications reveal information
about gene activity and regulation (Barth and Imhof, 2010;
Delatte et al., 2014). Using nuclei-isolation techniques, our ability
to look at transcription with hitherto unavailable cell-type-spe-
cific resolution will bring about new lessons in gene regulation
and chromatin biology.

FACS-Based Isolation of Cell-Type-Specific Nuclei
FACS-based procedures are frequently used to sort nuclei for
expression and chromatin profiling (Figure 3). Following the initial
development for human and mouse tissues (Jiang et al., 2008b),
the basic approach has been given several names, including
batch isolation of tissue-specific chromatin for immunoprecipita-
tion (BiTS-ChIP; Bonn et al., 2012a) and fluorescence-activated
nuclear sorting (FANS; Haenni et al., 2012) when developed for
Drosophila and C. elegans (Table 1). Both approaches rely on
sorting nuclei. Nuclei can be sorted more readily than whole
cells, in part because nuclei are more uniform in size and shape.
BiTS-ChIP and FANS work with both transgenic and immuno-
staining labeling approaches (Figure 3A), which makes this
method applicable to all multicellular organisms. Depending on
the intended use of the sorted nuclei, they can either be cross-
linked with formaldehyde (for ChIP-seq studies) or left in the
native state (for native ChIP or RNA isolation). It should be noted
that unfixed nuclei lose their integrity more easily, whereas fixed
nuclei are prone to clumping (Jiang et al., 2008b). In both cases,
this reduces the yield of nuclei. Depending on the specific cell
type that is targeted, millions of nuclei can be collected using
BiTS-ChIP or FANS, with high purity in a number of hours.

INTACT
Isolation of nuclei tagged in specific cell types (INTACT) is a
powerful alternative method to BiTS and FANS for isolating
nuclei that eliminates some of the limitations of FACS sorting
(Table 2). INTACT was developed in Arabidopsis (Deal and He-
nikoff, 2010) and adapted to C. elegans and D. melanogaster
(Henry et al., 2012; Steiner et al., 2012) (Table 1). This biochem-
ical method relies on expressing a tag localized to the outer
surface of the nuclear envelope, then immunopurifying the

Manual

~100 cells

FACS

>10 000 
cells

Laser

LCM

>1000 
cells

+

+

+
+

dissociated cells dissociated cells

UV
laser

IR
laser

cryosectioned 
tissue

FACS 
machine

fluorescence 
    microscope 

Figure 2. Methods for the Cell-Type-Specific Purification of Whole
Cells
Manual and FACS methods depend on protease dissociation of cells. For
manual isolation, GFP-positive cells are separated manually from non-fluo-
rescent cells under a fluorescence-dissectingmicroscope. The FACSmachine
separates cells based on fluorescence. For LCM, a thin, transparent film
becomes adhesive when irradiated by an infrared laser that is placed over the
cryosectioned tissue. After identifying the cell of interest by staining, immu-
nohistochemistry, or GFP signal, an infrared laser focused over the cell of
interest causes the cell(s) to adhere to the film, allowing the cell(s) of interest to
be selectively removed from the tissue section.
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Cell Sorting
FACS: fluorescence activated cell sorting  

when choosing one for your analysis (Table 2; see also Okaty
et al., 2011). First, there are differences in how the cells are
treated. Manual sorting and FACS generally use protease-
treated cells, a potential stress, and the cells remain alive during
the lengthy isolation procedure, which may alter gene expres-
sion (Richardson et al., 2015). Since cells need to be dissociated
from each other, non-specific RNAs from lysed cells may stick to
the cells of interest, causing contamination. FACS and manual
approaches may have significantly less contamination from
other cell types than LCM (Okaty et al., 2011). LCM can reach
the resolution of a few micrometers; however, contamination
by neighboring cells or missing segments (e.g., axon branches)
in tightly packed tissues are to be expected (Cheng et al., 2013).

Second, material and time constraints must be considered.
Manual sorting is slow relative to FACS and LCM. With manual
sorting, tens to hundreds of cells can be collected (Hempel
et al., 2007; Nagoshi et al., 2010). In practice, since ChIP-seq re-
quires at least hundreds of cells (Lara-Astiaso et al., 2014), the
manual isolationmethod is essentially limited to gene expression
profiling. Chromatin analyses are possible with LCM and FACS
(Weake et al., 2011). Using LCM, it is reasonable to collect cell
numbers in the high hundreds, and for FACS thousands of cells
can be readily purified. Although faster thanmanual sorting, LCM
and FACS remain time-consuming, particularly for rare cell types
within a complex sample.

The last consideration is the cost of the experiment and the
access to specialized equipment. Both LCM and FACS require
relatively expensive, often overbooked equipment that needs
specialist training. In contrast, manual sorting has a simple

setup, no state-of-the-art equipment is needed, and it can be
widely applied, but requires a lab member spending long hours
sorting cells, which adds to the experimental cost.

II: Measuring Transcription Activity and Chromatin
States within the Nucleus
Whole-cell transcriptomes provide an overview of the steady-
state mRNA levels. However, analyzing newly synthesized RNA
transcripts within the nucleus is a more direct measure of
transcriptional activity of individual genes. In addition, isolating
cell-type-specific nuclei allows the efficient purification of cell-
type-specific chromatin. Isolating nuclei facilitates an array of
techniques for studying chromatin and transcriptional regulation,
such as transcription factor binding sites, which can reveal
the gene-regulatory mechanisms controlling the expression of
specific genes (Bonn et al., 2012a). Chromatin structure, which
is instrumental in cell-type-specific gene regulation, can also
be probed by studying three-dimensional organization of nuclei
(Ghavi-Helm et al., 2014). Further, post-translational modifica-
tions of histones and DNA modifications reveal information
about gene activity and regulation (Barth and Imhof, 2010;
Delatte et al., 2014). Using nuclei-isolation techniques, our ability
to look at transcription with hitherto unavailable cell-type-spe-
cific resolution will bring about new lessons in gene regulation
and chromatin biology.

FACS-Based Isolation of Cell-Type-Specific Nuclei
FACS-based procedures are frequently used to sort nuclei for
expression and chromatin profiling (Figure 3). Following the initial
development for human and mouse tissues (Jiang et al., 2008b),
the basic approach has been given several names, including
batch isolation of tissue-specific chromatin for immunoprecipita-
tion (BiTS-ChIP; Bonn et al., 2012a) and fluorescence-activated
nuclear sorting (FANS; Haenni et al., 2012) when developed for
Drosophila and C. elegans (Table 1). Both approaches rely on
sorting nuclei. Nuclei can be sorted more readily than whole
cells, in part because nuclei are more uniform in size and shape.
BiTS-ChIP and FANS work with both transgenic and immuno-
staining labeling approaches (Figure 3A), which makes this
method applicable to all multicellular organisms. Depending on
the intended use of the sorted nuclei, they can either be cross-
linked with formaldehyde (for ChIP-seq studies) or left in the
native state (for native ChIP or RNA isolation). It should be noted
that unfixed nuclei lose their integrity more easily, whereas fixed
nuclei are prone to clumping (Jiang et al., 2008b). In both cases,
this reduces the yield of nuclei. Depending on the specific cell
type that is targeted, millions of nuclei can be collected using
BiTS-ChIP or FANS, with high purity in a number of hours.

INTACT
Isolation of nuclei tagged in specific cell types (INTACT) is a
powerful alternative method to BiTS and FANS for isolating
nuclei that eliminates some of the limitations of FACS sorting
(Table 2). INTACT was developed in Arabidopsis (Deal and He-
nikoff, 2010) and adapted to C. elegans and D. melanogaster
(Henry et al., 2012; Steiner et al., 2012) (Table 1). This biochem-
ical method relies on expressing a tag localized to the outer
surface of the nuclear envelope, then immunopurifying the
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Figure 2. Methods for the Cell-Type-Specific Purification of Whole
Cells
Manual and FACS methods depend on protease dissociation of cells. For
manual isolation, GFP-positive cells are separated manually from non-fluo-
rescent cells under a fluorescence-dissectingmicroscope. The FACSmachine
separates cells based on fluorescence. For LCM, a thin, transparent film
becomes adhesive when irradiated by an infrared laser that is placed over the
cryosectioned tissue. After identifying the cell of interest by staining, immu-
nohistochemistry, or GFP signal, an infrared laser focused over the cell of
interest causes the cell(s) to adhere to the film, allowing the cell(s) of interest to
be selectively removed from the tissue section.
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Cell Sorting

when choosing one for your analysis (Table 2; see also Okaty
et al., 2011). First, there are differences in how the cells are
treated. Manual sorting and FACS generally use protease-
treated cells, a potential stress, and the cells remain alive during
the lengthy isolation procedure, which may alter gene expres-
sion (Richardson et al., 2015). Since cells need to be dissociated
from each other, non-specific RNAs from lysed cells may stick to
the cells of interest, causing contamination. FACS and manual
approaches may have significantly less contamination from
other cell types than LCM (Okaty et al., 2011). LCM can reach
the resolution of a few micrometers; however, contamination
by neighboring cells or missing segments (e.g., axon branches)
in tightly packed tissues are to be expected (Cheng et al., 2013).

Second, material and time constraints must be considered.
Manual sorting is slow relative to FACS and LCM. With manual
sorting, tens to hundreds of cells can be collected (Hempel
et al., 2007; Nagoshi et al., 2010). In practice, since ChIP-seq re-
quires at least hundreds of cells (Lara-Astiaso et al., 2014), the
manual isolationmethod is essentially limited to gene expression
profiling. Chromatin analyses are possible with LCM and FACS
(Weake et al., 2011). Using LCM, it is reasonable to collect cell
numbers in the high hundreds, and for FACS thousands of cells
can be readily purified. Although faster thanmanual sorting, LCM
and FACS remain time-consuming, particularly for rare cell types
within a complex sample.

The last consideration is the cost of the experiment and the
access to specialized equipment. Both LCM and FACS require
relatively expensive, often overbooked equipment that needs
specialist training. In contrast, manual sorting has a simple

setup, no state-of-the-art equipment is needed, and it can be
widely applied, but requires a lab member spending long hours
sorting cells, which adds to the experimental cost.

II: Measuring Transcription Activity and Chromatin
States within the Nucleus
Whole-cell transcriptomes provide an overview of the steady-
state mRNA levels. However, analyzing newly synthesized RNA
transcripts within the nucleus is a more direct measure of
transcriptional activity of individual genes. In addition, isolating
cell-type-specific nuclei allows the efficient purification of cell-
type-specific chromatin. Isolating nuclei facilitates an array of
techniques for studying chromatin and transcriptional regulation,
such as transcription factor binding sites, which can reveal
the gene-regulatory mechanisms controlling the expression of
specific genes (Bonn et al., 2012a). Chromatin structure, which
is instrumental in cell-type-specific gene regulation, can also
be probed by studying three-dimensional organization of nuclei
(Ghavi-Helm et al., 2014). Further, post-translational modifica-
tions of histones and DNA modifications reveal information
about gene activity and regulation (Barth and Imhof, 2010;
Delatte et al., 2014). Using nuclei-isolation techniques, our ability
to look at transcription with hitherto unavailable cell-type-spe-
cific resolution will bring about new lessons in gene regulation
and chromatin biology.

FACS-Based Isolation of Cell-Type-Specific Nuclei
FACS-based procedures are frequently used to sort nuclei for
expression and chromatin profiling (Figure 3). Following the initial
development for human and mouse tissues (Jiang et al., 2008b),
the basic approach has been given several names, including
batch isolation of tissue-specific chromatin for immunoprecipita-
tion (BiTS-ChIP; Bonn et al., 2012a) and fluorescence-activated
nuclear sorting (FANS; Haenni et al., 2012) when developed for
Drosophila and C. elegans (Table 1). Both approaches rely on
sorting nuclei. Nuclei can be sorted more readily than whole
cells, in part because nuclei are more uniform in size and shape.
BiTS-ChIP and FANS work with both transgenic and immuno-
staining labeling approaches (Figure 3A), which makes this
method applicable to all multicellular organisms. Depending on
the intended use of the sorted nuclei, they can either be cross-
linked with formaldehyde (for ChIP-seq studies) or left in the
native state (for native ChIP or RNA isolation). It should be noted
that unfixed nuclei lose their integrity more easily, whereas fixed
nuclei are prone to clumping (Jiang et al., 2008b). In both cases,
this reduces the yield of nuclei. Depending on the specific cell
type that is targeted, millions of nuclei can be collected using
BiTS-ChIP or FANS, with high purity in a number of hours.

INTACT
Isolation of nuclei tagged in specific cell types (INTACT) is a
powerful alternative method to BiTS and FANS for isolating
nuclei that eliminates some of the limitations of FACS sorting
(Table 2). INTACT was developed in Arabidopsis (Deal and He-
nikoff, 2010) and adapted to C. elegans and D. melanogaster
(Henry et al., 2012; Steiner et al., 2012) (Table 1). This biochem-
ical method relies on expressing a tag localized to the outer
surface of the nuclear envelope, then immunopurifying the
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Figure 2. Methods for the Cell-Type-Specific Purification of Whole
Cells
Manual and FACS methods depend on protease dissociation of cells. For
manual isolation, GFP-positive cells are separated manually from non-fluo-
rescent cells under a fluorescence-dissectingmicroscope. The FACSmachine
separates cells based on fluorescence. For LCM, a thin, transparent film
becomes adhesive when irradiated by an infrared laser that is placed over the
cryosectioned tissue. After identifying the cell of interest by staining, immu-
nohistochemistry, or GFP signal, an infrared laser focused over the cell of
interest causes the cell(s) to adhere to the film, allowing the cell(s) of interest to
be selectively removed from the tissue section.
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LCM: laser capture microdissection 
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Cell Sorting
Microfluidics: can isolate rare circulating cells
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Cell Sorting
High-throughput (~100,000 cells) 

Drop-seq inDrop 
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Single-Cell Technologies

(i) isolate single cells 

(ii) amplify genome efficiently   

(iii) sequence DNA

30 Single Cell Research

SAMPLE PREPARATION

There are many options available to isolate a single cell from a heterogeneous 

population of cells.72 In addition to well-established methods, such as fluorescence 

activated cell sorting (FACS), microscopy, and the use of antibody capture for cell 

separation, there is an increasingly ingenious armamentarium of modern methods 

to isolate single cells with ever greater accuracy and specificity.73,74 The most critical 

part of single-cell analysis is sample preparation, where specific cells need to be 

accurately isolated from a heterogeneous population.75 This section highlights 

commonly used and novel techniques for isolation of single cells from suspension 

or tissues.

Single cells from dissociated tissues are directly sorted into 96-well plates for analysis.

72. Navin N. and Hicks J. (2011) Future medical 
applications of single-cell sequencing in can-
cer. Genome Med 3: 31

73. Yilmaz S. and Singh A. K. (2012) Single cell 
genome sequencing. Curr Opin Biotechnol 23: 
437-443

74. Moon S., Kim Y. G., Dong L., Lombardi M., 
Haeggstrom E., et al. (2011) Drop-on-demand 
single cell isolation and total RNA analysis. 
PLoS One 6: e17455

75. Saliba A. E., Westermann A. J., Gorski S. 
A. and Vogel J. (2014) Single-cell RNA-seq: 
advances and future challenges. Nucleic Acids 
Res 42: 8845-8860



Amplification and Sequencing
Review: Next Generation Sequencing (NGS)
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Single-cell Amplification

http://www.yourgenome.org/sites/
default/files/images/illustrations/
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Review: RNA-Sequencing
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Single-cell Amplification
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library preparation
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Amplification and Sequencing
Review: RNA-Sequencing
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Amplification and Sequencing
Review: RNA-Sequencing
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Single-cell Amplification
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Single-cell Amplification
Digital Expression Matrix: counting unique molecules
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Short Summary
DNA sequencing: 

- new amplification methods other than PCR 

- statistical methods for SNPs/CNV calling 

RNA sequencing: 

- standards created for quality control 

- can achieve high sequencing depth  

- high cell throughput methods arising  



Short Summary

en.wikipedia.org



Downstream Analysis
Supervised Analysis

http://scienceblogs.com/clock/2006/12/07/from-two-cells-to-many-cell-di/



Cell Population Identification

Higher moments
Measures of the shape of a 
statistical distribution beyond 
mean and variance, such as 
skewness and kurtosis.

fluctuations. Dynamic changes in RNA content are 
associated with cyclic processes, such as the cell cycle 
in dividing cells and circadian rhythms. Other fluctua-
tions are stochastic and reflect the fact that transcription 
is a discrete process composed of many probabilistic 
steps. Further heterogeneity is introduced by uneven 
partitioning of the cellular content at cell division (for 
example, REF. 88). Direct transcriptome analysis of large 
numbers of single cells should open up the study of 
oscillatory and stochastic regulatory processes in unper-
turbed cell populations. In a population of putatively 
identical cells, sets of co-regulated genes can be identi-
fied. Each set must be part of a functional process, such 
as an oscillator or a stochastic process. For example, 
genes that share a common upstream regulator would 
presumably show correlated expression. At present, the 
number of single cells that must be analysed in order 
to discover covariant genes is unknown, and finding 
first estimates of these numbers will be a key task in the 
near future. There is also evidence that transcription 
is subjected to strong intrinsic fluctuations89,90. Models 
to explain this intrinsic noise lead to predictions about 
the shape of the mRNA copy-number distribution, 
which can be tested against experimentally measured 
distributions89. Such tests cannot be carried out using 
bulk measurements, which do not give any information 
about the variance or any higher moments. Nonetheless, 
single-cell transcriptome analysis provides only a snap-
shot in time, and it will remain important to comple-
ment this view with dynamic, long-term measurements 
by, for example, time-lapse microscopy91.

The road to single-cell transcriptomics. Despite advances 
in single-molecule DNA72–74 and RNA92 sequencing, 
it is not yet possible to sequence RNA directly from 
single cells. Currently, RNA needs to be converted to 
cDNA and amplified, and this must be achieved with 
minimal losses and without introducing too much 
quantitative bias.

There are several sources of noise in a single-cell tran-
scriptome experiment. There are biological fluctuations, 
both global (that is, affecting the total amount of RNA 

in the cell) and local (for example due to co-regulation or 
large-scale chromatin modifications). There is also tech-
nical noise, for example due to pipetting errors, tempera-
ture differences, differences in sequencing depth, PCR 
amplification bias and differences in reverse transcrip-
tion efficiency. It is important to realize that single-cell 
transcriptome analysis is also a single-molecule analysis, 
because many genes are expressed at only a few mRNA 
molecules per cell. Amplification from small numbers of 
molecules is subject to the Monte Carlo effect, in which 
stochastic events in the first few cycles of PCR are amplified  
exponentially, causing large quantitative errors.

The ultimate goal of quantitative single-cell tran-
scriptome analysis must be to count every RNA mol-
ecule in the cell exactly, resulting in near-zero technical 
error. This is required, for example, if we are to use the 
shape of mRNA count distributions to infer the kinetics 
of transcription. Accurate molecule counting is in fact 
possible by using unique labels for molecules93–97. After 
amplification and deep sequencing, each original mole-
cule can be identified. As long as the sample is sequenced 
deeply enough, so that each molecular label is observed 
at least once, differences in amplification efficiency do 
not matter. Although the use of unique molecular labels 
has until now been used only for bulk samples, it is a key 
advance that will probably enable a more quantitative 
analysis of single-cell transcriptomes.

Another source of error is losses, which can be severe. 
The detection limit of published protocols is 5–10 mol-
ecules of mRNA. If, as seems likely, the limit of detection 
is primarily determined by losses during sample prepa-
ration, this would indicate that 80–90% of mRNA was 
lost. Or, to put it the other way around, a 90% loss leads 
to an approximately 50% chance of failing to detect a 
gene that is expressed at a level of seven mRNA mol-
ecules (from the binomial distribution). These losses 
are especially problematic in small cells, such as stem 
cells, in which the mRNA content is low to begin with. 
But even in larger cells, such losses introduce a severe 
quantitative error owing to the stochastic sampling of 
small numbers of molecules. For example, measuring 
100 molecules with a 90% loss leads to 10 ± 3 detected 

Figure 3 | Cell-type discovery by unbiased sampling and transcriptome profiling of single cells.  
a | A sample of cells is taken from the tissue of interest, with the aim of obtaining a representative sample of the 

types of cells that are present in the tissue. b | Each cell is profiled using single-cell RNA sequencing (RNA-seq).  

c | Subsequently, the resulting expression profiles are clustered. The result is a map of ‘cell space’, in which similar 

cells are grouped close to each other. The strategy is shown here in cartoon form, but in practice it will be 

necessary to collect and analyse thousands of cells in each tissue (that is, millions of cells overall) to make a 

comprehensive cell space map of a whole organism.
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Downstream Analysis
How do cell types differ from each other?  

Is there any addition diversity in the same cell type?
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Dimension Reduction
Principle Component Analysis (PCA)

e.g., visualizing the samples in a smaller subspace 

http://www.nlpca.org/fig_pca_principal_component_analysis.png

http://www.nlpca.org/fig_pca_principal_component_analysis.png


PCA

Variance	/	Standard	Devia/on:	measure	of	the	spread	of	the	
data	

(Calcula2on:	average	distance	from	the	mean	of	the	data)	

Covariance:	measure	of	how	much	each	of	the	dimensions	
vary	from	the	mean	with	respect	to	each	other;	measured	
between	2	dimensions	to	see	if	there	is	a	rela2onship	
between	the	2	dimensions	

*	The	covariance	between	one	dimension	and	itself	is	the	
variance.	

Probability and Linear Algebra Review



PCA

E.g.	for	3	dimensions,	consider	random	vector	(x,y,z):	

	 	 	 cov(x,x)		cov(x,y)		cov(x,z)	
	 C	=						cov(y,x)		cov(y,y)		cov(y,z)	
	 	 	 cov(z,x)		cov(z,y)		cov(z,z)	

Diagonal	is	the	variances	of	x,	y	and	z	
cov(x,y)	=	cov(y,x)	hence	matrix	is	symmetrical	about	the	diagonal	
N-dimensional	data	will	result	in	nxn	covariance	matrix	

[        ]

Probability and Linear Algebra Review



PCA

• The	eigenvalue	problem	is	any	problem	having	the	
following	form:	

	 	 	 A	.	v	=	λ	.	v	
– 	 A:	n	x	n	matrix	
– 	 v:	n	x	1	non-zero	vector	
– 	 λ:	scalar	

• Any	value	of	λ	for	which	this	equation	has	a	solution	is	
called	the	eigenvalue	of	A	and	vector	v	which	
corresponds	to	this	value	is	called	the	eigenvector	of	A.

Probability and Linear Algebra Review



Dimension Reduction
Principle Component Analysis (PCA)
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PCA

Principal component analysis (PCA) converts a set of observations of 
possibly correlated variables into a set of values of uncorrelated variables 
called principal components. 
The first principal component is the projection of the data into a single 
dimension that has as high a variance as possible (that is, accounts for as 
much of the variability in the data as possible); each succeeding 
component in turn has the highest variance possible under the constraint 
that it be orthogonal to (uncorrelated with) the preceding components.
Therefore the PCs provide a view on the structure of the data that best 
explains its variance.

cf. Wikipedia: Principal component analysis



The example data is two-dimensional, but most of the information is contained 
along a dimension shown here by the red vector. 
We could thus restrict our analysis to a projection along that vector.

PCA



PCA

PCA	process	–STEP	1

• Subtract	the	mean
from	each	of	the	data	dimensions.	All	the	x	values	
have	x	subtracted	and	y	values	have	y	subtracted	
from	them.	This	produces	a	data	set	whose	mean	is	
zero.
Subtracting	the	mean	makes	variance	and	
covariance	calculation	easier	by	simplifying	their	
equations.	The	variance	and	co-variance	values	are	
not	affected	by	the	mean	value.



PCA

PCA	process	–STEP	1

DATA:
x						 y
2.5	 2.4
0.5	 0.7
2.2	 2.9
1.9	 2.2
3.1	 3.0
2.3	 2.7
2	 1.6
1	 1.1
1.5	 1.6
1.1	 0.9

ZERO	MEAN	DATA:
x	 y				
.69	 .49
-1.31	 -1.21
.39	 .99
.09	 .29
1.29	 1.09
.49	 .79
.19	 -.31
-.81	 -.81
-.31	 -.31
-.71	 -1.01



PCA

PCA	process	–STEP	2

• Calculate	the	covariance	matrix
cov =			 .616555556				.615444444

.615444444				.716555556

• since	the	non-diagonal	elements	in	this	covariance	matrix	are	positive,	
we	should	expect	that	both	the	x	and	y	variable	increase	together.



PCA

PCA	process	–STEP	3

• Calculate	the	eigenvectors	and	eigenvalues	of	the	covariance	matrix
eigenvalues	=	 .0490833989

1.28402771
eigenvectors	=	 -.735178656			-.677873399

.677873399		-.735178656	



PCA

PCA	process	–STEP	4

• Reduce	dimensionality	and	form	feature	vector	the	eigenvector	
with	the	highest	eigenvalue	is	the	principle	component	of	the	
data	set.

• In	our	example,	the	eigenvector	with	the	larges	eigenvalue	was	
the	one	that	pointed	down	the	middle	of	the	data.	

• Once	eigenvectors	are	found	from	the	covariance	matrix,	the	
next	step	is	to	order	them	by	eigenvalue,	highest	to	lowest.	This	
gives	you	the	components	in	order	of	significance.	



PCA

PCA	process	–STEP	4
• Now,	if	you	like,	you	can	decide	to	ignore	the	components	of	lesser	
significance

• You	do	lose	some	information,	but	if	the	eigenvalues	are	small,	you	
don’t	lose	much

• n	dimensions	 in	your	data	
• calculate	n	eigenvectors	and	eigenvalues
• choose	only	 the	first	p	eigenvectors
• final	data	set	has	only	p	dimensions.



Dimension Reduction
Principle Component Analysis (PCA)

• linear multivariate statistical analysis  
   

• understand underlying data structures 

• identify bias, experimental errors, batch effects

• visualize the samples in a smaller subspace 
(dimension reduction) 

• visualize the relationship between variables 
(correlation analysis)



t-SNE

t-SNE



t-SNE
Key quantities

Kullback–Leibler divergence  
(to be minimized) low-dimensional  

joint distribution 

high-dimensional  
joint distribution 

https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence


Cluster:	a	collec2on	of	data	objects	
Similar	to	the	objects	in	the	same	cluster	(Intraclass	similarity)	
Dissimilar	to	the	objects	in	other	clusters	(Interclass	dissimilarity)	

Cluster	analysis	
Sta2s2cal	method	for	grouping	a	set	of	data	objects	into	clusters	
A	good	clustering	method	produces	high	quality	clusters	with	high	
intraclass	similarity	and	low	interclass	similarity		

Clustering	is	an	unsupervised	classifica2on	method	
Can	be	a	stand-alone	tool	or	as	a	preprocessing	step	for	other	algorithms

Cluster Analysis



Cluster Analysis

Group	objects	according	to	their	similarity

Cluster:
a set of objects
that are similar
to each other
and separated
from the other
objects.

Example: green/
red data points
were generated
from two different
normal distributions



Hierarchical Clustering

• This	produces	a	binary	
tree	or	dendrogram
• The	final	cluster	is	the	
root	and	each	data	item	
is	a	leaf
• The	height	of	the	bars	
indicate	how	close	the	
items	are



Hierarchical Clustering

Start	with	every	data	point	in	a	separate	cluster	
Keep	merging	the	most	similar	pairs	of	data	points/clusters	un2l	we	
have	one	big	cluster	leT	

This	is	called	a	bo-om-up	or	agglomera4ve	method	



Hierarchical Clustering

Levels	of	Clustering



We	already	know	about	distance	measures	between	data	
items,	but	what	about	between	a	data	item	and	a	cluster	or	
between	two	clusters?	
We	just	treat	a	data	point	as	a	cluster	with	a	single	item,	so	our	
only	problem	is	to	define	a	linkage	method	between	clusters	
As	usual,	there	are	lots	of	choices…	

Linkage	in	Hierarchical	Clustering

Hierarchical Clustering



Hierarchical Clustering

• Definition	
• Each	cluster	ci	is	associated	with	a	mean	vector	µi	which	is	
the	mean	of	all	the	data	items	in	the	cluster	

• The	distance	between	two	clusters	ci	and	cj	is	then	just	
d(µi	,	µj	)	

• This	is	somewhat	non-standard	–	this	method	is	usually	
referred	to	as	centroid	linkage	and	average	linkage	is	defined	
as	the	average	of	all	pairwise	distances	between	points	in	
the	two	clusters

Average Linkage



Hierarchical Clustering

• The	minimum	of	all	pairwise	distances	between	points	in	the	two	clusters	
• Tends	to	produce	long,	“loose”	clusters

Single Linkage



Hierarchical Clustering

• The	maximum	of	all	pairwise	distances	between	points	in	the	two	clusters	
• Tends	to	produce	very	tight	clusters

Complete Linkage



Hierarchical Clustering

Complete linkage gives preference to compact/spherical 
clusters. Single linkage can produce long stretched clusters.

Distances between clusters (summary)
• Calculation	of	the	distance	between	two	clusters	
is	based	on	the	pairwise	distances	between	
members	of	the	clusters.	
• Complete	linkage:	largest	distance	between	
points		

• Average	linkage:	average	distance	between	
paris	of	points		

• Single	linkage:	smallest	distance	between	
points	

• Centroid:	distance	between	centroids



Hierarchical Clustering

•Major	advantage	
• Conceptually	very	simple	
• Easy	to	implement	à most	commonly	used	technique	

•Major	weakness	of	agglomerative	clustering	methods	
• do	not	scale	well:	time	complexity	of	at	least	O(n2),	where	n	is	
the	number	of	total	objects	

• can	never	undo	what	was	done	previously	à high	likelihood	of	
getting	stuck	in	local	minima



Other Challenges



Batch Effects Occur
the batch effect represents the systematic technical differences 
when samples are processed and measured in different batches 
and which are unrelated to any biological variation recorded



Batch Effects Occur

Figure 1.2: GENEMAM - Unguided PCA of X. Samples for each plate are denoted by a
di↵erent color and/or symbol.

6

Figure 4.3: GENOA - (b) Guided PCA of Y0X. Samples for each plate are denoted by a
di↵erent color and/or symbol.

(b) gPCA

As shown in section 4.2.3, gPCA is not sensitive to filtering, so filtering can be used to reduce

the data dimension and facilitate implementing gPCA by reducing the analysis time without

worry.

60

http://scholarscompass.vcu.edu/cgi/viewcontent.cgi?article=4179&context=etd

Before batch effect removal After batch effect removal

http://scholarscompass.vcu.edu/cgi/viewcontent.cgi?article=4179&context=etd


Sequencing Depth

Pollen AA et al. (2014) Low-coverage 
single-cell mRNA sequencing 
reveals cellular heterogeneity and 
activated signaling pathways in 
developing cerebral cortex. Nat 
Biotechnol 32(10):1053-1058. 
  
Streets AM, Huang Y. (2014) How 
deep is enough in single-cell RNA-
seq? Nat Biotechnol 32(10):
1005-1006.

https://www.lab7.io/test/wp-
content/uploads/2013/09/rna-
sample-depth1.png

https://www.lab7.io/test/wp-content/uploads/2013/09/rna-sample-depth1.png


Biological Effects

• Cancer: cell lineage 

• Metagenomics: cis/trans mechanisms 

• Stem Cells: cellular phenotypes 

• Immunology: cell type identification  

• Neurology: somatic mutations 

https://s-media-cache-ak0.pinimg.com/736x/c4/f2/d4/c4f2d4cd1b03f73b34ce38be28edca18.jpg

https://s-media-cache-ak0.pinimg.com/736x/c4/f2/d4/c4f2d4cd1b03f73b34ce38be28edca18.jpg
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Recent technical developments have enabled the 
transcriptomes of hundreds of cells to be assayed in an 
unbiased manner, opening up the possibility that new 
subpopulations of cells can be found. However, the effects  
of potential confounding factors, such as the cell cycle,  
on the heterogeneity of gene expression and therefore on the 
ability to robustly identify subpopulations remain unclear.  
We present and validate a computational approach that 
uses latent variable models to account for such hidden 
factors. We show that our single-cell latent variable model 
(scLVM) allows the identification of otherwise undetectable 
subpopulations of cells that correspond to different stages 
during the differentiation of naive T cells into T helper 2 
cells. Our approach can be used not only to identify cellular 
subpopulations but also to tease apart different sources of gene 
expression heterogeneity in single-cell transcriptomes.

Single-cell measurements of gene expression, using imaging tech-
niques such as RNA-FiSH (fluorescence in situ hybridization), have 
provided important insights into the kinetics of transcription and 
cell-to-cell variation in gene expression1–3. However, such approaches 
can examine the expression of only a small number of genes in each 
experiment, thus restricting our ability to examine co-expression pat-
terns and to robustly identify subpopulations of cells. Protocols have 
been developed to overcome these limitations by amplifying small 
quantities of mRNA4,5, which, in combination with microfluidics 
approaches for isolating individual cells6,7, have been used to analyze 
the co-expression of tens to hundreds of genes in single cells8,9. These 
protocols also allow the entire transcriptome of large numbers of sin-
gle cells to be assayed in an unbiased way. This was initially done using 
microarrays10,11 but is more often now done using next-generation  

sequencing12–15. Such approaches have been used to model early 
embryogenesis in the mouse16 and to investigate bimodality in gene 
expression patterns of differentiating immune cell types17.

After the generation of single-cell RNA-sequencing (RNA-seq) pro-
files from hundreds of cells, one goal to identify subpopulations that 
share a common gene-expression profile. Some of these subpopulations 
may represent previously unidentified cell types. Additionally, by study-
ing patterns of gene expression in different single cells, insights into the 
regulatory landscape of each cell population can be obtained.

However, methods for identifying subpopulations of cells and 
modeling their gene regulatory landscapes are only now beginning to  
emerge18,19. To fully exploit single-cell RNA-seq data, we have to account 
for the random noise inherent to such data sets20 and, equally important, 
to account for different hidden factors that might result in gene expres-
sion heterogeneity. Although the importance of accounting for unob-
served factors is well established in bulk RNA-seq studies21–23, robust 
approaches to detect and account for confounding factors in single-cell 
RNA-seq studies remain to be developed. Here, we describe a compu-
tational approach that uses latent variable models to reconstruct such 
hidden factors from the observed data. We validate our scLVM using a 
population of staged mouse embryonic stem cells (mESCs), before apply-
ing it to study T helper 2 (TH2) cell differentiation. We show that scLVM 
facilitates the identification of physiologically meaningful subpopulations 
of cells, which cannot otherwise be found.

RESULTS
Cell cycle variation affects global gene expression
Single-cell RNA-seq is now commonly used to study cell differen-
tiation15,24. Here, we reanalyzed data from a single-cell RNA-seq 
experiment that was originally designed to study the differentia-
tion of naive T cells into TH2 cells25. Briefly, a population of naive 
Cd4+ T helper cells were activated and polarized with interleukin 
(IL)-4 to induce differentiation toward a TH2 subtype. At 4.5 d post-
stimulation, cells were sorted into a G4P group (fourth generation,  
IL-13–GFP+ cells) and a G2N group (second generation, IL-13–
GFP− cells). Subsequently, these two groups of cells were pooled in 
equal proportions. From this pool, a set of 96 asynchronously divid-
ing cells (including both fully and partially differentiated cells) was 
captured using the Fluidigm C1 system, and sequencing libraries 
were prepared and processed. After quality control and account-
ing for technical noise, RNA-seq data for 81 cells and 7,073 genes 
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with variation in their expression level above technical noise were 
considered for analysis (Supplementary Fig. 1).

The cell cycle is known to have wide-ranging effects on cellular 
physiology26,27 and can modulate both differentiation and gene 
expression profiles28 (Fig. 1a). Cells that are analyzed during devel-
opment are likely to be in different stages of the cell cycle28. When 
we examined sets of genes whose expression is known to be associ-
ated with different cell-cycle stages, we observed that their expression 
levels varied considerably among single cells (Supplementary Fig. 1). 
Although variation in gene expression that is linked to the cell cycle 
can provide important biological insights, in many contexts such vari-
ation might mask other more physiologically important differences 
in gene expression between cells.

Importantly, variation in gene expression that is linked to the cell 
cycle is not restricted to well-annotated cell-cycle marker genes. When 
we examined a set of moderately to highly variable genes that have 
not previously been associated with the cell cycle, we observed that 
2,881 genes (44%) showed a significant correlation of gene expres-
sion with at least one cell-cycle gene (P < 0.05, Bonferroni adjusted; 
Supplementary Fig. 2). Therefore, merely removing the set of anno-
tated cell-cycle genes before performing downstream analyses is likely 
to be unsuccessful because it would not enable all effects independent 
of the cell cycle to be detected.

Development of scLVM to account for effects of the cell cycle
We used scLVM to address the confounding effects of the cell cycle. 
In this type of computational approach, one first reconstructs the cell-
cycle state (or other unobserved factors) and then uses this informa-
tion to infer ‘corrected’ gene expression levels. This two-step approach 
enables the effect of unobserved factors on gene expression heteroge-
neity to be accounted for in downstream analyses, thereby allowing 
us to study variation in gene expression levels that is independent of 
the cell cycle. Moreover, for each gene whose expression is analyzed, 
our method allows the relative contribution of any reconstructed fac-
tors that affect cell-to-cell variation in expression to be determined.  
A schematic overview of the approach is shown in Figure 1b.

To validate our method, we generated single-cell RNA-seq data 
from mESCs using the Fluidigm C1 protocol, where the cell-cycle 

status of each cell is known a priori. We assayed the transcriptional 
profile of 182 ESCs that had been staged for cell-cycle phase (G1,  
S and G2M) based on sorting of the Hoechst 33342-stained cell area 
of a flow cytometry (FACS) distribution. In the fitting stage, scLVM 
uses the expression profiles of a relatively small set of 892 annotated 
cell-cycle genes (Supplementary Table 1) to recover a covariance 
matrix that accounts for cell-to-cell heterogeneity due to the cell 
cycle (Supplementary Fig. 3). Using alternative annotations for cell-
cycle genes (Supplementary Table 1) yielded very similar results 
(Supplementary Figs. 3–5). Subsequently, for all remaining genes, 
we used scLVM to estimate the proportion of variance in expression 
across cells that is explained by technical noise, biological variability 
and cell cycle. This approach can also be used to create a ‘corrected’ 
gene expression data set, in which the effect of the identified factor(s) is 
removed, which can be used as the input for existing analysis methods. 
scLVM is related to approaches for modeling variability in bulk mRNA 
expression studies21,22 and to methods used in genome-wide associa-
tion studies in which the relatedness between individuals is inferred 
from genotype29 and/or expression levels30 and then accounted for in 
downstream analyses using linear mixed models.

As the cell-cycle stage of each cell is known in our data set, we can 
compare the scLVM estimates of the proportion of variance explained 
by the cell cycle with the gold standard values obtained when using 
the annotation of individual cells based on the Hoechst staining 
(FACS). We observed a striking correlation (r2 = 0.91) between our 
scLVM estimates and the gold standard values, providing confidence 
in the efficacy of our approach (Fig. 2a). The model fit and these 
estimates for the variance explained by the cell cycle were consist-
ent when a much smaller gene set containing only tens of genes was 
used to train the model (Supplementary Fig. 5a–g) and when alter-
native metrics were applied to quantify the proportion of variation 
explained by the cell cycle (Supplementary Fig. 5h). This suggests 
that scLVM can be used to robustly recover and estimate the vari-
ance due to unobserved factors from relatively small gene sets that 
annotate these factors. Additionally, we examined how many pairs of 
genes had significantly correlated patterns of expression across cells 
(i) without cell-cycle correction, (ii) with the scLVM correction and 
(iii) with an ideal correction using the gold standard cell-cycle state.  
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Figure 1 Overview of the scLVM approach. (a) The observed expression profile of differentiation marker genes (upper panel) is the result of the 
differentiation process of interest together with the effects of the cell cycle and other confounding sources of variation. After accounting for cell-cycle 
effects (middle panel), one can uncover gene expression signatures that contribute to the continuous differentiation process more clearly (lower panel). 
(b) scLVM two-stage procedure. First, in the fitting stage, the cell-to-cell covariance matrix that corresponds to the cell cycle is inferred from the 
gene expression profiles of genes with cell-cycle annotation (upper panel). The learnt covariance is then used in downstream analyses, including the 
detection of substructure, the detection of gene-to-gene correlations and the analysis of variance (lower panel). Biol. var., biological variance;  
Tech. var., technical variance.
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Full example: DropSeq

Macosko, Evan Z., et al. "Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets." Cell 161.5 (2015): 1202-1214.
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